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Sensitivity to perturbations in a quantum chaotic billiard
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The Loschmidt echdLE) measures the ability of a system to return to the initial state after a forward
guantum evolution followed by a backward perturbed one. It has been conjectured that the echo of a classically
chaotic system decays exponentially, with a decay rate given by the minimum between thE widtie local
density of states and the Lyapunov exponent. As the perturbation strength is increased one obtains a crossover
between both regimes. These predictions are based on situations where the Fermi gol@e@Ruls valid.

By considering a paradigmatic fully chaotic system, the Bunimovich stadium billiard, with a perturbation in a
regime for which the FGR manifestly does not work, we find a crossover framLyapunov decay. We find
that, challenging the analytic interpretation, these conjectures are valid even beyond the expected range.
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Hypersensitivity to initial conditions is the key ingredient M(t) may decay exponentially with a rate given by the
of classical chaos. In quantum mechanics, its absence led tyapunov exponent of the classical system. As a condition,
the study of other features that could be associated with thghe perturbation must be quantically strong to produce statis-
chaos of the corresponding classical system. Celebrated e¥eally unpredictable changes in the quantum phase but weak
amples are the Gutzwiller trace formula for the quantumenough to leave the underlying classical dynamics undis-
spectral density, the description of the spectral fluctuationsurbed.
by the random matrix theory, and the relation of spectral More recently, Jacquod, Silvestrov, and Beenakf@r
correlations to transpoft,2]. predicted a crossover from a perturbation-dependent regime

In an alternative point of view, Per¢8]| suggested that to the Lyapunov one. However, this prediction is based on
quantum dynamics should distinguish regular and irregulathe strong assumption that the perturbation lives in a Fermi
classical dynamics if the time evolution of an initial state for golden rule(FGR) regime, i.e., the local density of states
slightly different Hamiltonians are compared. That is, the(LDOS) is a Breit-Wigner distribution whose width varies
sensitivity of a quantum system should be searched not byuadratically with the perturbation strength. In this situation,
changing the initial conditions but rather by perturbing them(t) for a wave packet and the survival probability of an
Hamiltonian. The natural quantity for this investigation is theunperturbed eigenstate have a decay rate giveli .bBoth
ability of the system to return to the initial staf$) after  observables would describe the same physics if the correla-
being evolved with a Hamiltoniat, for a periodt followed  tion between states forming the wave packet could be ne-
by an identical period of unitary evolution with-H;  glected.
=—(Ho+2). This defines the quantum Loschmidt echo Our aim is to determine whether the perturbation-
(LE) independent Lyapunov regime and the crossover frolm a

decay are possible in a fully chaotic system with a clear
M(t) = plexdiHot/hlexd —iHot/A]|)[>. (1) semiclassical description where the presence of the perturba-
tion is not described by the FGR. This occurs when there are
The perturbatior®, can represent the uncontrolled degrees ofstrong correlations that could be related to classical struc-
freedom of an environment. As in classical chaos, the LE igures which prevents a description in terms of a random ma-
related to a “distance” between a perturbed and an unpertrix theory. This perturbation is then said to hengeneric
turbed evolution of the same initial state. [7] and the LDOS can be very different from the Lorentzian

In recent years new hints were available due to the adanalyzed in Ref[6]. Our positive answer in such a case
vances in nuclear magnetic resonance. The LE was measuregens the question of a semiclassical interpretation for the
in a many-bodysystem of interacting sping4] in a range  weak perturbation regime.
where it is known to have spectral signatures of chaos. A We consider the paradigmatic desymmetrized Bunimov-
striking finding was that when interactions with the environ-ich stadium billiard[8]. It consists of a free particle inside a
ment and residual interactions are very weak, the decay divo-dimensional planar region whose boundé&ris shown
M (t) becomes independent of the perturbation strength. Iim Fig. 1. The radiug is taken equal to unity and the en-
this situation, it depends on the dynamical scales of the syslosed area is + /4. This system not only has a great ex-
tems, i.e., orHy. While the complexity of the experimental perimental relevancg9,10], but also it is a fully chaotic one
system did not allow for a derivation of the characteristicby oposition to the system considered in Héf. Besides, it
time for these specific system, Jalabert and Pastajgki can rule out the diffusive effect of disorder suspected to af-
studied the LE in @ne-bodyclassically chaotic Hamiltonian fect the behavior oM (t) in a Lorentz ga$11]. The classical
with a perturbation represented by a long range guenchedynamics is completely defined once the boundary is given.
disordered potential. They have showed analytically thaOn the other hand, to address the quantum mechanics, it is
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FIG. 2. M(t) for the desymmetrized stadium billiard perturbed
. ' 7 by a change in the boundary conditions. The calculations are shown
-0.12 -0.06 0 0.06 0.12 in two different energy regions(a) corresponds to the region

E_} aroundk,=50. The value of is, from the top curve to the bottom:

0.019, 0.038, 0.057, 0.075, 0.094, 0.11, 0.13, 0.15, and Qn}7.
FIG. 1. Spectrum of the desymmetrized stadium billiard with COrresponds to the region aroukg=100. The value of is, from

mixed boundary conditions controlled by the parametgEq. (3)]. the top curve to the bottom: 0.0066, 0.0131, 0.020, 0.0262,. 0.0;’727,
The wave numberk,,(¢) run between 49.3 and 50.7. Inset: Sche- 0-0393, 0.0458, 0.0524, 0.0589, 0.066, and 0.072. The thick lines
matic figure of the system. The solid line shows the boundary of thé&0rrespond to an exponential decay with decay rgte 1/A.
stadium billiard where the mixed boundary conditions are applied ) . ) .
[Eq. (2)]. The coordinate on the boundary is also shown. Dashed theery it would represent the direction and strength of a dis-
lines correspond to the symmetries axis with Dirichlet boundarytortion of the stadiuni13]. Here we use
conditions.

1o 0=g=<l,

9D=] (14 w)sing-1)+a, 1<q=1+m/2

necessary to solve the Helmholtz equatidifeg,=k’e,

with appropriate boundary conditions,, is the wave num- o o
ber and by settingi=2m=1, k? results the energy. The With @=—1/(2+=/2) that could be assimilated to a dilation

most commonly used boundary conditions are the Dirichleflond the horizontal axis and a contraction along the perpen-
(hard wall$ and the Neumanfacoustics conditions. How- dlcular. one. Notice that the integral above eould be viewed
ever, we are interested in the possibility of perturbing the2S an inner product among the wave functiows, /on de-
quantum system without breaking the orthogonal symmetrjin€d overC. This relation defines an effective Hilbert space
and leaving the classical motion undisturtiedl This is pos- I & window Ak~ perimeter/are413]. The cutoff function
sible using more generalized boundary conditions: @ ,,=exd —2(¢~ )% (kAK)?] restricts the effect of the
perturbation to states in this energy shell of widbh
d =koAK . It allows us to deal with a basis of finite dimension
$(q)+£9(q) %(Q):O’ 2) with wave numbers around the mean valkgeand restricts to
a particular regiom\k of interest.
whereq is a coordinate along the boundary of the billiard  Figure 1 shows the dependence of the energy levels on the
(see Fig. 1, andn is the unit vector normal to the boundary. perturbation. They exhibit many avoided crossingséas
g(q) is a real function and the parameter controlling the varied. While the energy levels show the typical behavior of
strength of the perturbation. Dirichlet boundary conditionsa general system without constants of motion, we also rec-
are recovered wheg=0 while Neumann conditions are sat- ognize that some small avoided crossings are situated along
isfied in the limité—o. The eigenfunctions and eigenener- parallel tilted lines. These energies correspond to the well
gies for the casé=0 are readily obtained by using the scal- known “bouncing ball” states which are highly localized in
ing method[12]. momentum. The selected perturbation does not modify sub-
In order to compute the LE in this system, a relation be-stantially those states.
tween the eigenvalues and eigenfunctions for different values Since the LE is a classically motivated quantity, a Gauss-
of the paramete¢ is needed. Based on a recently developedan wave packefwith a mean value of momentuky and
Hamiltonian expansion for deformed billiarfis3], it is easy  velocity vg) is a proper semiclassical selection for an initial
to show that the eigenvalues and eigenfunctions for differentondition. By evaluating its evolution in a system without
values of the parameter can be obtained from the Hamil- perturbation €=0) and other with perturbation strengéh
tonian Hy+ 2 (€) which is expressed in the basis of eigen-we compute the LEEQ. (1)] as a function of time. At this
states at=0 (from now on we will call¢, to these eigen- point one must recognize that the choice of a semiclassical
states, initial condition is very relevant in order to observe the
“Lyapunov” regime [14,6].
S b %g(q)(w" (w”dq @ While a global exponential decay 8(t) can be clearly
wr wrJe an on T identified in almost any individual initial condition, the fluc-
tuations for a system witlky not too large can introduce
The functiong(q) measures the strength of the change in theerror in the estimation of the rate. Hence, we have taken an
boundary condition along the contour. Within a perturbationaverage over 30 initial states. Figure@2and 2b) show
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* FIG. 4. M(t) as a function of the rescaled ting for ko="50
0 , . , and ¢§=0.019, 0.038, 0.057, and 0.075. The dotted line gives the
0 0.05 0.1 0.15 decayM (t) =exp(-TI't/2).
E_, decayed, one expects the chaos controlled decay of the diag-

onal ones will survive. This gives a crossover criterion for
FIG. 3. WidthI" of the local density of states as a function of the the decay rate of the LE of #4=min[I",\] as the perturba-
perturbation strengttg for k=50 (filled circles and k,=100  tive parameteg changes.
(circles. The solid lines are the best linear fit. Inset: Local density  The LDOS is shown in Fig. 3 for three different pertur-
_of statesP(r) for different perturbations itkko=50 (r is measured  pation strengths. In contrast to the case of Réf.our dis-
in mean level spacing units tribution is not Lorentzian. This is related to the fact that the
. used perturbatiotithe function does not connect all
typical sets of curves oM(t) for ko=50 andk,=100, re- differerr)n regions rIE)f phase spa%(ec?)f]or instance, the bouncing
spectively. It can be seen that after a transiéft) decays )| states are practically undisturbed Bydetermining the
exponentially~exg —t/7,]. For &> £ =4.5k the decay rate  ongeneric nature of the perturbation. In particular, we have
7, becomes independent of the perturbation ang, ¥\ oy4jyated the widt', showing the spreading of the unper-

with \ the Lyapunov exponent of the classical systemy, e eigenstates when expressed in terms of the new ones.
[15,16 in accordance with the conjecture. On the other handyne results show dinear dependence of on ¢ shown in

for large timedM (t) saturates to a finite valud ..~ 1/N with Fig. 3; that is, we obtai"=0.36¢k2. Moreover, taking into
N the effective dimension of the Hilbert spas. account thah =0.86k, the critical valuet,, for the crossover
According to Rgf.[S] the~chacls controlled decay appears¢om the T regime to the Lyapunov one is expectedéat
provided that > 1/7 wherel =v,7 is the length over which =2 4k (remember that from Fig. 2 it resulig.~4.5k).
the perturbation changes the quantum phasean free path  Then, for our system, the criterium works witH'agiven by
which, for a plane wave with wave numbkrand velocity  the half width of the LDOS. This is shown in Fig. 4 where
vo. For a quenched disorder perturbation is evaluated fronfor perturbation strengthg<4.5"*, the LE decays as

the FGR[5] M (t) = exd —t/7,]1/7,=T/2 for \>T'/2.
These results contrast with the FGR dependence qf 1/
i: 2_77 lim > 13 |2£ /2 ) = ¢2 observed for weak perturbations. These are the Lorentz
T N 0t K Kkl (Ep —E)2+(7/2)% gas with a perturbed effective mgdd], the kicked top per-

turbed by a perpendicular delayed kidk, and the general
Referencd 6] realized that in the opposite regime »f  chaotic system perturbed by a quenched disoffemwhere
<1/7, the LE of an eigenstates,, of H, is just a survival random matrix theory describe{%g] the I' decay. In this
probability and must decay exponentially under the action ofontext, the linear dependence of bh £ may be considered
the perturbation, as a further indicative that the physics of the LE decay can be
_ very different from that described by E¢b) and that the
(¢ lexdi(Ho+3)t/7]| ¢, )P~exd —t/7,], (5  result of Ref[6] has more general validity than expected. In
. the nonperturbative regime, before the Lyapunov exponent
given by Eq.(4) for 7./B<t<#i/A (A the mean level spac- takes over, the LE decays exponentially with a mgiten by
ing) [17]. The appearance of this FGR behavior requires thaghe perturbation dependent width of the LD@®other im-
a typical matrix element=(|X ,,(¢)|)y,. of the perturba- portant feature is thag,~4.5k—0 whenk— . This con-
tion to beU>A. The Fourier transform of Eq5) is the  firms that in the classical limit Eq1) would decay with the
local density of statesLDOS) which, although being dis- | yapunov regime regardless of the magnitud&ofecover-
crete, would present a Lorentzian envelgf8] of width I ing the chaotic hypersensitivity to perturbations.
=1/7 . In Ref.[6] it is conjectured that this decay can deter-  In summary, by studying one of the most important mod-
mine the LE decay with more general initial states. This isels in quantum chaos, a fully chaotic billiard system, we
the regime controlled by the nondiagonal terms in the semihave shown that for a wide range of parameters, the
classical expansiof5]. Once the nondiagonal terms have Loschmidt echo decays exponentially with a rate given by
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the Lyapunov exponent of the classical system. Moreovemility, decoherence in waves, and quantum-classical transi-
we have discussed the onset of this Lyapunov regime retion. Furthermore, the dephasing time observed in transport
quires that\>1'/2. In the opposite situation, the presence ofexperiments in mesoscopic devices shows a perturbation in-
an exponential controlled by, even in the absence of a dependent ratg9d]. So far, there is no consensus about the
generic perturbation described by the FGR, demands furthghysical phenomenon causing it. Since the time segle
StudieS to fu”y interpret the deta”ed mechanism Controllingmeasured by the LE is a decoherence t|me and our method_
this regime. We finally remark that th (t) would behave  ¢jogy can obviously be adapted to treat the transport problem

much differently for intrisically quantum initial conditions. [2] our results open a rich field for exploration: the connec-
For an eigenstate ¢ one finds a decay described by a FGR{jony of both time scales.

and it does not show a crossover into the Lyapunov decay

[14]. In the other quantum extreme, an initial state generated We thank D. Cohen, R. Jalabert, and M. Saraceno for very
from the long time evolution of a semiclassical wave packeuseful discussions, and the support from SeCyT-UNC,
[20], we find a preparation time dependent Gaussian decaONICET, ANPCyT, ECOS-SeTCIP, and Antorchas-Vitae.
[21]. These issues have begun to receive much atte[2@®n D.A.W. received support from CONICETArgenting and
due to their strong connection with quantum computing staAECI (Spain.
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